1-Methyl-D-Tryptophan Potentiates TGF-β-Induced Epithelial-Mesenchymal Transition in T24 Human Bladder Cancer Cells

نویسندگان

  • Rodrigo Barbosa Oliveira Brito
  • Camila Soares Malta
  • Diego Mota Souza
  • Luiz Henrique Gomes Matheus
  • Yves Silva Teles Matos
  • Chrisna Souza Silva
  • Janaína Mendes Ferreira
  • Valeria Sutti Nunes
  • Cristiane Miranda França
  • Humberto Dellê
  • Michael Platten
چکیده

Immune escape and metastasis are the hallmarks of several types of cancer including bladder cancer. One of the mechanisms involved in these processes has been linked to indoleamine 2,3-dioxygenase (IDO). Although IDO is classically recognized for its immunomodulatory property, it has presented nonimmunological effects in some tumors. TGF-β1 is believed to contribute to carcinoma development by modulating immunossupressive molecules, including IDO. In addition, TGF-β1 induces the epithelial-mesenchymal transition (EMT), which is a critical step in the tumor invasiveness and metastasis. We investigated the role of MT and IDO modulation in the induction of EMT by TGF-β1 in T24 human bladder carcinoma cells. When T24 cells were incubated with the IDO inhibitor (MT, 1-methyl-D-tryptophan), with TGF-β1, and with MT+TGF-β1, a significant decrease of IDO expression and activity was observed. In addition, downregulation of e-cadherin and upregulation of n-cadherin and EMT transcription factors were induced by the treatments, confirming the induction of EMT. siRNA-mediated knockdown of IDO decreased e-cadherin expression, but had no effect on EMT transcription factors. In the scratch-wound assay, the heightened migration process was intensified when the cells were incubated with MT+TGF-β1. These effects were associated with a robust inhibition of Akt activation. After inoculation of T24 cells under the kidney capsule of Balb/c nude, the cells were positive for IDO in the center of the cell infiltrate, being negative in the periphery, where EMT is high. In conclusion, inhibition of IDO by TGF-β1 and MT is associated with EMT in T24 human bladder carcinoma cells. MT has potentiating effect in TGF-β1-induced EMT, independently of IDO. This nonimmunological effect of MT should be considered if IDO is the target to avoid immune escape in bladder cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TGF-β1 regulates invasion and migration of human bladder cancer cells T24 through epithelial mesenchymal transition

Objective: To investigate the role of TGF-β1 on Epithelial Mesenchymal Transition (EMT) and invasion ability in human bladder cancer cell line T24. Methods: After pre-treatment with TGF-β1 of different concentrations for 24 h, we observed the morphological changes of T24 cells under phase-contrast microscopy. The mRNA and protein expression levels of EMT relative marker E-cadherin and Vimentin ...

متن کامل

Transforming growth factor‑β1 induces epithelial‑mesenchymal transition and increased expression of matrix metalloproteinase‑16 via miR‑200b downregulation in bladder cancer cells.

Transforming growth factor‑β1 (TGF‑β1) is involved in the migration and metastases of bladder cancer. The present study was designed to investigate whether TGF‑β1 is able to induce epithelial‑mesenchymal transition (EMT) and the upregulation of matrix metalloproteinase‑16 (MMP‑16), and to identify an association between EMT and MMP‑16 in bladder cancer. Following TGF‑β1 treatment, samples of HT...

متن کامل

GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial–mesenchymal transition through the TGF‐β1/Smad2 signalling pathway

This study investigated the effects of Golgi membrane protein 73 (GP73) on the epithelial-mesenchymal transition (EMT) and on bladder cancer cell invasion and metastasis through the TGF-β1/Smad2 signalling pathway. Paired bladder cancer and adjacent tissue samples (102) and normal bladder tissue samples (106) were obtained. Bladder cancer cell lines (T24, 5637, RT4, 253J and J82) were selected ...

متن کامل

Growth differentiation factor-15: a p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells

Growth differentiation factor-15 (GDF15), a member of the TGF-β superfamily, affects tumor biology of certain cancers, but remains poorly understood in bladder cancer cells. This study determined the expression, regulation, function, and potential downstream target genes of GDF15 in bladder carcinoma cells. The transitional papilloma carcionoma cells (RT4) expressed higher levels of GDF15 as co...

متن کامل

Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-β/Smad signaling pathway

The transforming growth factor-β (TGF-β) signaling pathway is believed to contribute to carcinoma development by increasing cell invasiveness and metastasis and inducing the epithelial-to-mesenchymal transition (EMT). Protein phosphatase PPM1A has been reported to dephosphorylate TGF-β-activated Smad2/3, thus inhibiting the TGF-β signaling pathway. In this study, we investigated the role of PPM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015